

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0172 of 9 March 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Team Pro Injection system TP E SD+ for concrete

Bonded fastener for use in concrete

TEAM PRO INTERNATIONAL FZ-LLC Office No 1006A, Bldg No A2 PO BOX 41010, RAK Vereinigte Arabische Emirate

Team Pro Plant, Germany

39 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

European Technical Assessment ETA-21/0172

Page 2 of 39 | 9 March 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-21/0172

Page 3 of 39 | 9 March 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Team Pro Injection system TP E SD+ for concrete" is a bonded anchor consisting of a cartridge with injection mortar Injection mortar TP E SD+ and a steel element according to Annex A3 and A5.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3, C 1 to C 5, C 7 to C 9, C 11 to C13
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 6, C 10, C 14
Displacements under short-term and long-term loading	See Annex C 15 to C 17
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 18 to C 21

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-21/0172

Page 4 of 39 | 9 March 2021

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

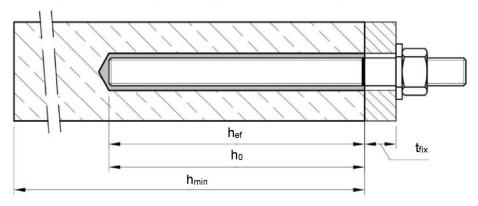
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

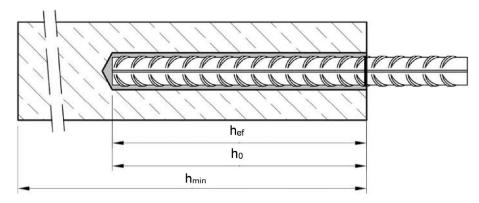
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

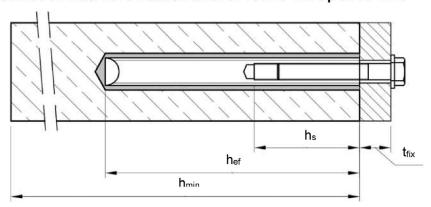
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 9 March 2021 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider


Installation threaded rod M8 up to M30

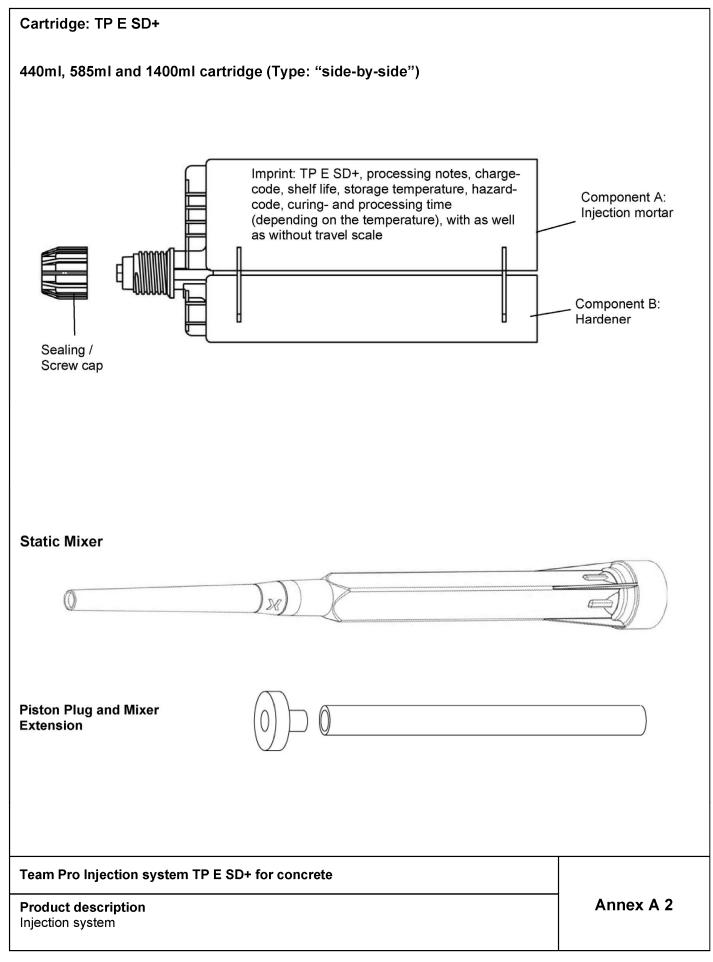
prepositioned installation or


push through installation (annular gap filled with mortar)

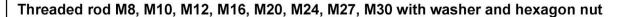
Installation reinforcing bar Ø8 up to Ø32

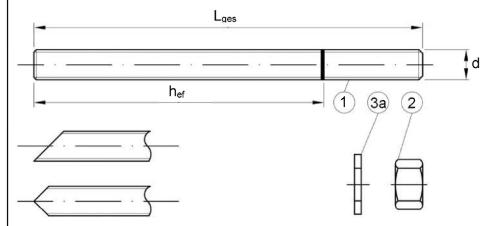
Installation internal threaded anchor rod IG-M6 up to IG-M20

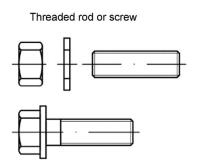
 t_{fix} = thickness of fixture

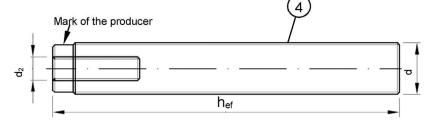

h_{ef} = effective anchorage depth

 h_0 = depth of drill hole


 h_{min} = minimum thickness of member


Team Pro Injection system TP E SD+ for concrete	
Product description Installed condition	Annex A 1

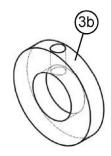


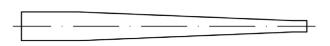


Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc.
 Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Marking: e.g. M8


Marking Internal thread


Mark Mark

M8 Thread size (Internal thread)
A4 additional mark for stainless steel

HCR additional mark for high-corrosion resistance steel

Filling washer and mixer reduction nozzle for filling the annular gap between anchor rod and fixture

Team Pro Injection system TP E SD+ for concrete

Product description

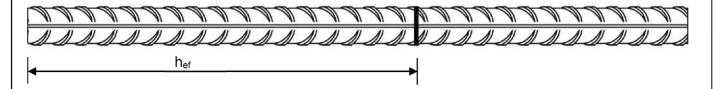
Threaded rod, internal threaded rod and filling washer

Annex A 3

Table A1: Materials								
Part	Designation	Material						
- zii - ho	nc plated ≥ 5 ot-dip galvanised ≥ 4	acc. to EN 10087:1998 μm acc. to EN ISO 0 μm acc. to EN ISO 5 μm acc. to EN ISO	4042 146	2:1999 or 1:2009 and EN ISO 10684:	2004+AC:2009 or			
	Property class Characteristic steel ultimate tensile strength Characteristic steel yield strength Elongation fracture							
				f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A ₅ > 8%		
1	Threaded rod	acc. to		f _{uk} = 400 N/mm ² f _{uk} = 500 N/mm ²	$f_{yk} = 320 \text{ N/mm}^2$ $f_{yk} = 300 \text{ N/mm}^2$	A ₅ > 8% A ₅ > 8%		
		EN ISO 898-1:2013		f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm²	A ₅ > 8%		
				f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	A ₅ ≥ 12% ³⁾		
2	Hexagon nut	acc. to EN ISO 898-2:2012	4 5 8	for anchor rod class 4.6 o for anchor rod class 5.6 o for anchor rod class 8.8				
3a	Washer			galvanised or sherardized N ISO 7089:2000, EN ISC	7093:2000 or EN ISO 7	094:2000)		
3b	Filling washer	Steel, zinc plated, ho	t-dip	galvanised or sherardized		_		
	Internal threaded	I Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture		
4 anchor rod			f _{uk} = 500 N/mm²	f _{yk} = 400 N/mm²	A ₅ > 8%			
		EN ISO 898-1:2013	8.8	f _{uk} = 800 N/mm²	f _{yk} = 640 N/mm²	A ₅ > 8%		
Staiı	nless steel A4 (Mater	ial 1.4401 / 1.4404 / 1	.457	1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t r 1.4565, acc. to EN 10088	o EN 10088-1:2014)			
	Property class			Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture		
1	Threaded rod ¹⁾⁴⁾		50	f _{uk} = 500 N/mm²	f _{vk} = 210 N/mm ²	A ₅ ≥ 8%		
	Tilledded fed	acc. to EN ISO 3506-1:2009	70	f _{uk} = 700 N/mm²	f _{yk} = 450 N/mm ²	A ₅ ≥ 12% ³⁾		
		214 100 0000 1.2000	80	f _{uk} = 800 N/mm²	f _{yk} = 600 N/mm ²	A ₅ ≥ 12% ³⁾		
2	Hexagon nut 1)4)	acc. to EN ISO 3506-1:2009	50 70 80	for anchor rod class 50 for anchor rod class 70 for anchor rod class 80				
A2: Material 1.4301 / 1.4307 / 1.4311 / 1.4567 or 1.4541, acc. to EN 10088-1:2014 A4: Material 1.4401 / 1.4404 / 1.4571 / 1.4362 or 1.4578, acc. to EN 10088-1:2014 HCR: Material 1.4529 or 1.4565, acc. to EN 10088-1: 2014 (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000)								
3b	Filling washer	Stainless steel A4, Hi	igh c	orrosion resistance steel				
	Internal threaded	Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture		
4	anchor rod ¹⁾²⁾	acc. to	50	f _{uk} = 500 N/mm ²	f _{yk} = 210 N/mm²	A ₅ > 8%		
		EN ISO 3506-1:2009	/0	f _{uk} = 700 N/mm²	f _{yk} = 450 N/mm ²	A ₅ > 8%		

¹⁾ Property class 70 or 80 for anchor rods and hexagon nuts up to M24 and Internal threaded anchor rods up to IG-M16

⁴⁾ Property class 80 only for stainless steel A4 and HCR


Team Pro Injection system TP E SD+ for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

²⁾ for IG-M20 only property class 50

 $^{^{3)}}$ A₅ > 8% fracture elongation if <u>no</u> use for seismic performance category C2

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 24, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Materials

Part	Designation	Material
Reinf	forcing bars	
1	$1 + N + 1992 - 1 - 1 \cdot 2002 + 27 \cdot 2010 + 2002 \cdot 1$	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Team Pro Injection system TP E SD+ for concrete	
Product description Materials reinforcing bar	Annex A 5

Specifications of intended use								
Anchorages subject to (Static	and quasi-static lo	oads):						
	for a working	ife of 50 years	for a working li	fe of 100 years				
Base material	Non-cracked concrete	cracked concrete	Non-cracked concrete	cracked concrete				
Hammer drilling (HD), Hammer drilling with hollow drill bit (HDB) or compressed air drilling (CD)	Ø8 to	0 M30, 0 Ø32, 0 IG-M20	M8 to M30, Ø8 to Ø32, IG-M6 to IG-M20					
Diamond drilling (DD)	M8 to M30, Ø8 to Ø32, IG-M6 to IG-M20	No performance assessed	M8 to M30, Ø8 to Ø32, IG-M6 to IG-M20	No performance assessed				
Temperature Range:	1	to +40 °C¹) to +72 °C²)		to +40 °C¹) to +72 °C²)				

Anchorages subject to (Seismic action):

	for Performance Category C1	for Performance Category C2				
Base material	Cracked and non-	-cracked concrete				
Hammer drilling (HD), Hammer drilling with hollow drill bit (HDB) or compressed air drilling (CD)	M8 to M30, Ø8 to Ø32	M12 to M24				
Diamond drilling (DD)	No performance assessed	No performance assessed				
Temperature Range:	I: -40 °C to +40 °C ¹⁾ II: -40 °C to +72 °C ²⁾	I: -40 °C to +40 °C ¹⁾ II: -40 °C to +72 °C ²⁾				

^{1) (}max long term temperature +24 °C and max short term temperature +40 °C)

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Team Pro Injection system TP E SD+ for concrete	
Intended Use Specifications	Annex B 1

^{2) (}max long term temperature +50 °C and max short term temperature +72 °C)

Page 11 of European Technical Assessment ETA-21/0172 of 9 March 2021

English translation prepared by DIBt

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- · Hole drilling by hammer (HD), hollow (HDB), compressed air (CD) or diamond drill mode (DD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Team Pro Injection system TP E SD+ for concrete	
Intended Use Specifications	Annex B 2

Table B1: Installation parameters for threaded rod											
Anchor size				M8	M10	M12	M16	M20	M24	M27	M30
Diameter of elemen	t	d = d _{nom}	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole di	ameter	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective cook advantable		h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Ellective ellibedillei	Effective embedment depth		[mm]	160	200	240	320	400	480	540	600
Diameter of clearance hole in	Prepositioned ins		[mm]	9	12	14	18	22	26	30	33
the fixture	Push through i	nstallation d _f	[mm]	12	14	16	20	24	30	33	40
Maximum torque mo	oment	max T _{inst} ≤	[Nm]	10	20	40 ¹⁾	60	100	170	250	300
Minimum thickness of member		h _{min}	[mm]		_f + 30 m : 100 mr			ı	h _{ef} + 2d ₀		
Minimum spacing		s _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge distance c _{min}		[mm]	35	40	45	50	60	65	75	80	

¹⁾ Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Table B2: Installation parameters for rebar

Anchor size			Ø 8 ¹⁾	Ø 10 ¹⁾	Ø 1:	2 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 24 ¹⁾	Ø 25 ¹⁾	Ø 28	Ø 32
Diameter of element	d = d _{nom}	[mm]	8	10	12	2	14	16	20	24	25	28	32
Nominal drill hole diameter	d_0	[mm]	10 12	12 14	14	16	18	20	25	30 32	30 32	35	40
Effective embedment depth	h _{ef,min}	[mm]	60	60	70)	75	80	90	96	100	112	128
Effective embedment depth	h _{ef,max}	[mm]	160	200	24	0	280	320	400	480	500	560	640
Minimum thickness of member	h _{min}	[mm]	$h_{ef} + 30 \text{ mm} \ge h_{ef} + 2d_0$										
Minimum spacing	s _{min}	[mm]	40	50 60)	70	75	95	120	120	130	150
Minimum edge distance	c _{min}	[mm]	35	40	45	5	50	50	60	70	70	75	85

¹⁾ both nominal drill hole diameter can be used

Table B3: Installation parameters for Internal threaded anchor rod

Anchor size	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Internal diameter of anchor rod	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of anchor rod ¹⁾	$d = d_{nom}$	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀	[mm]	12	14	18	22	28	35
Cff active a sub-advant danth	h _{ef,min}	[mm]	60	70	80	90	96	120
Effective embedment depth	h _{ef,max}		200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
Maximum torque moment	max T _{inst} ≤	[Nm]	10	10	20	40	60	100
Thread engagement length min/max	I _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min}	[mm]		30 mm 0 mm	h _{ef} + 2d ₀			
Minimum spacing	s _{min}	[mm]	50	60	75	95	115	140
Minimum edge distance	c _{min}	[mm]	40	45	50	60	65	80

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Team Pro Injection system TP E SD+ for concrete	
Intended Use Installation parameters	Annex B 3

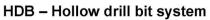
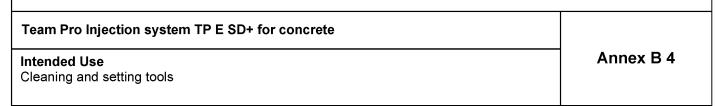


Table B4	l: Parar	neter clea	ning and s	setting	g tool	s				
					manne L	Philipping.				
Threaded Rod	Rebar	Internal threaded anchor rod	d ₀ Drill bit - Ø HD, HDB, CD, DD	ı	l _b h - Ø	d _{b,min} min. Brush - Ø	Piston plug	Installatio of	n directio piston plu	
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1	→	1
M8	8		10	RB10	11,5	10,5		•		
M10	8 / 10	IG-M6	12	RB12	13,5	12,5		No plue	roguirod	
M12	10 / 12	IG-M8	14	RB14	15,5	14,5		No plug	required	
	12		16	RB16	17,5	16,5				
M16	14	IG-M10	18	RB18	20,0	18,5	VS18			
	16		20	RB20	22,0	20,5	VS20			
M20		IG-M12	22	RB22	24,0	22,5	VS22			
	20		25	RB25	27,0	25,5	VS25	h _{ef} >	h _{ef} >	
M24		IG-M16	28	RB28	30,0	28,5	VS28	250 mm	250 mm	all
M27	24 / 25		30	RB30	31,8	30,5	VS30	250 IIIM	250 mm	
	24 / 25		32	RB32	34,0	32,5	VS32			
M30	28	IG-M20	35	RB35	37,0	35,5	VS35			
	32		40	RB40	43,5	40,5	VS40			

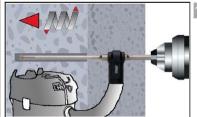
CAC - Rec. compressed air tool (min 6 bar)


Drill bit diameter (d₀): all diameters

Drill bit diameter (d₀): all diameters

The hollow drill bit system contains the Heller Duster Expert hollow drill bit and a class M vacuum with minimum negative pressure of 253 hPa <u>and</u> flow rate of minimum 150 m³/h (42 l/s).

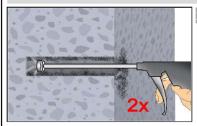
Installation instructions


Drilling of the bore hole (HD, HDB, CD)

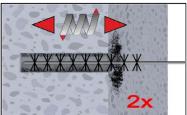
Hammer (HD) or compressed air drilling (CD)

Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2 or B3). Proceed with Step 2.

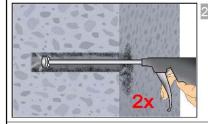
In case of aborted drill hole, the drill hole shall be filled with mortar.


Hollow drill bit system (HDB) (see Annex B 3)

Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2 or B3). This drilling system removes the dust and cleans the bore hole during drilling (all conditions). Proceed with Step 3.


In case of aborted drill hole, the drill hole shall be filled with mortar.

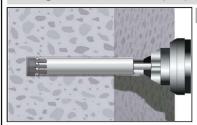
Attention! Standing water in the bore hole must be removed before cleaning.


CAC: Cleaning for dry, wet and water-filled bore holes with all diameter in uncracked and cracked concrete

Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 4) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > $d_{b,min}$ (Table B4) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension must be used.

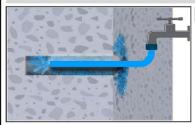
Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 4) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.


After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

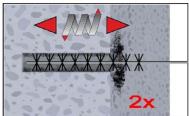
Team Pro Injection system TP E SD+ for concrete	
Intended Use Installation instructions	Annex B 5

Installation instructions (continuation)

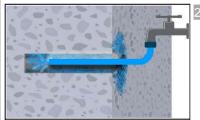
Drilling of the bore hole (DD)

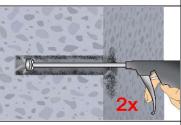

Diamond drilling (DD)

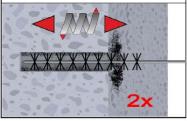
Drill with diamond drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3). Proceed with Step 2.


In case of aborted drill hole, the drill hole shall be filled with mortar.

Attention! Standing water in the bore hole must be removed before cleaning.

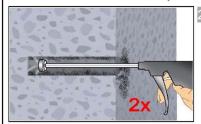

SPCAC: Cleaning for dry, wet and water-filled bore holes with all diameter in uncracked and cracked concrete


Rinsing with water until clear water comes out.

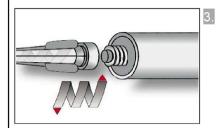

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush $> d_{b,min}$ (Table B4) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension must be used.

Rinsing again with water until clear water comes out.

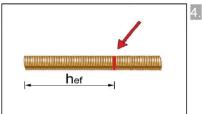
Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 4) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used



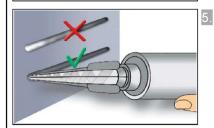
Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush $> d_{b,min}$ (Table B4) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension must be used.


Team Pro Injection system TP E SD+ for concrete	
Intended Use Installation instructions (continuation)	Annex B 6

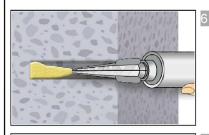
Installation instructions (continuation)

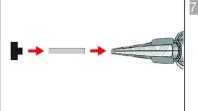


Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 4) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.



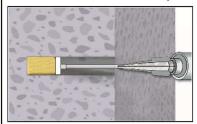
Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.


For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.


Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey or red colour.

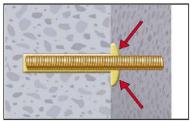
Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Table B5.


Piston plugs shall be used according to Table B4 for the following applications:

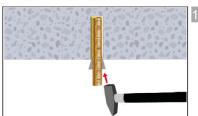
- Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
- Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm
 Assemble mixing nozzle, mixer extension and piston plug before injecting mortar.

Team Pro Injection system TP E SD+ for concrete	
Intended Use Installation instructions (continuation)	Annex B 7

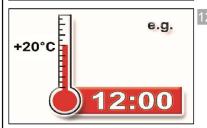
Installation instructions (continuation)

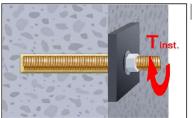

Insert piston plug to back of the hole and inject adhesive. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used.

During injection the piston plug is naturally pushed out of the borehole by the back pressure of the mortar. Observe the gel-/ working times given in Table B5.



Push the fixing element into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment mark has reached the surface level.


The anchor shall be free of dirt, grease, oil or other foreign material.


After inserting the anchor, the annular gab between anchor rod and concrete, in case of a push through installation additionally also the fixture, must be complete filled with mortar. If excess mortar is not visible at the top of the hole, the requirement is not fulfilled and the application has to be renewed.

For overhead application the anchor rod shall be fixed (e.g. wedges) until the mortar has started to harden.

Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).

After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. In case of prepositioned installation the annular gab between anchor and fixture can be optional filled with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Team Pro Injection system TP E SD+ for concrete	
Intended Use Installation instructions (continuation)	Annex B 8

Table B5:	Ma	aximum wo	orking time and mini	mum curing time		
Concrete temperature			Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete	
0 °C	to	+ 4 °C	90 min	144 h	288 h	
+ 5 °C	to	+ 9 °C	80 min	48 h	96 h	
+ 10 °C	to	+ 14 °C	60 min	28 h	56 h	
+ 15 °C	to	+ 19 °C	40 min	18 h	36 h	
+ 20 °C	to	+ 24 °C	30 min	12 h	24 h	
+ 25 °C	to	+ 34 °C	12 min	9 h	18 h	
+ 35 °C	to	+ 39 °C	8 min	6 h	12 h	
+4	0 °C		8 min	4 h	8 h	
Cartridge	e temp	erature		+5°C to +40°C	1	

Team Pro Injection system TP E SD+ for concrete	
Intended Use Curing time	Annex B 9

Т	able C1:	Characteristic values resistance of threads			ension	resista	ance a	and st	teel sl	hear		
Size					M8	M10	M12	M16	M20	M24	M27	M30
Cr	oss section area	1	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
Cr	naracteristic ter	nsion resistance, Steel failu	re 1)	•	•	•			•			
Ste	eel, Property cla	ss 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Ste	eel, Property cla	ss 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
Ste	eel, Property cla	ss 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Sta	ainless steel A2,	A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Sta	ainless steel A2,	A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
Sta	ainless steel A4	and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Cr	naracteristic ter	nsion resistance, Partial fac	tor 2)									
Ste	eel, Property cla	ss 4.6 and 5.6	γ _{Ms,N}	[-]				2,0	כ			
Ste	eel, Property cla	ss 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]				1,5	5			
Stainless steel A2, A4 and HCR, class 50				[-]				2,8	6			
Sta	ainless steel A2,	A4 and HCR, class 70	γ _{Ms,N}	[-]	1,87							
Stainless steel A4 and HCR, class 80				[-]	1,6							
Characteristic shear resistance, Steel failure				1	1	1			T		ı	
_	Steel, Property	class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
rarm		class 5.6 and 5.8	V ⁰ Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
Without lever	Steel, Property	class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
ᆵ	Stainless steel	A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
Vith V	Stainless steel	A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
>		A4 and HCR, class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property	class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property	class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
	Steel, Property	class 8.8	M ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
Vith lever	Stainless steel	A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
×	Stainless steel A2, A4 and HCR, class 70		M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80			[Nm]	30	59	105	266	519	896	_3)	_3)
Cr	naracteristic sh	ear resistance, Partial facto	M ⁰ _{Rk,s}									
Ste	Steel, Property class 4.6 and 5.6					1,67						
Ste	eel, Property cla	ss 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2	:5			
Sta	ainless steel A2	A4 and HCR, class 50	$\gamma_{Ms,V}$	[-]				2,3	8			
Sta	ainless steel A2	A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5	6			
Stainless steel A4 and HCR, class 80 Y _{Ms,V} [-]								1,3	3			

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009. ²⁾ in absence of national regulation

³⁾ Anchor type not part of the ETA

Team Pro Injection system TP E SD+ for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

8.06.01-14/21 Z23578.21

Table C2:	Characteristic v	alues for C	oncrete co	one failure and Splitting with all kind
Anchor				All Anchor type and sizes
Concrete cone f	ailure			
Non-cracked con-	crete	k _{ucr,N}	[-]	11,0
Cracked concrete	9	k _{cr,N}	[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting		•	<u>.</u>	
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance	<u>'</u>	s _{cr,sp}	[mm]	2 c _{cr,sp}

Team Pro Injection system TP E SD+ for concrete	
Performances Characteristic values for Concrete cone failure and Splitting with all kind of action	Annex C 2

	racteristic val on for a worki			s und	der st	atic a	and q	uasi-	static			
Anchor size threaded ro	od			M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure		.										
Characteristic tension res	istance	N _{Rk,s}	[kN]			$A_{s} \cdot f_{s}$	_{uk} (or s	ee Tab	le C1)			
Partial factor		$\gamma_{Ms,N}$	[-]	see Table C1								
Combined pull-out and	concrete failure											
Characteristic bond resist holes (CD)	ance in non-crack	ced concrete C2	20/25 in har	mmer d	Irilled h	oles (H	ID) and	l compr	essed	air drill	ed	
I: 40°C/24°C	Dry, wet concrete and	^τ Rk,ucr	[N/mm²]	20	20	19	19	18	17	16	16	
ط بق Hi: 72°C/50°C	flooded bore hole	INN, UCI	[15	15	15	14	13	13	12	12	
Characteristic bond resist	ance in non-crack	ced concrete C2	20/25 in har	nmer c	Irilled h	oles wi	th hollo	ow drill	bit (HD	B)		
<u>열</u> I: 40°C/24°C	Dry, wet			17	16	16	16	15	14	14	13	
1: 40°C/24°C 1: 72°C/50°C 1: 72°C/50°C 1: 72°C/50°C	τ _{Rk,ucr}	[N]/ 21	14	14	14	13	13	12	12	11		
원 명 T: 40°C/24°C	E B II: 72°C/50°C concrete co		[N/mm²]	16	16	16	15	15	14	14	13	
ெ ⊟ II: 72°C/50°C	hole			14	14	14	13	13	12	12	11	
Characteristic bond resist	⊥ ance in cracked c	oncrete C20/2	in hamme									
and with hollow drill bit (H		1	1		1	···-/,						
II: 72°C/50°C	Dry, wet concrete and	^τ Rk,cr	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	
<u> </u>	flooded bore hole			6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	
Reduction factor ψ^0_{sus} in holes (CD) and with hollow		cracked concre	ete C20/25 i	in hamı	mer dril	led hol	es (HD), com	oressed	d air dri	lled	
I: 40°C/24°C	Dry, wet	Ψ ⁰ sus	[-]	0,80								
II: 72°C/50°C	flooded bore hole			0,68								
		C25/30					1,	02				
		C30/37						04				
Increasing factors for con-	crete	C35/45						07				
Ψс		C40/50 C45/55						08 00				
		C50/60						09 10				
Concrete cone failure		1000/00					٠,	10				
Relevant parameter							see Ta	able C2				
Splitting				I								
Relevant parameter							see Ta	able C2				
Installation factor												
for dry and wet concrete (γ_{inst}	[-]					,0				
for flooded bore hole (HD;	; HDB, CD)	rinst	[-]				1	,2				
Team Pro Injection sy	stem TP E SD+	for concrete										
Performances Characteristic values of te	Performances Characteristic values of tension loads under static and quasi-static action								Annex C 3			
								L				

Ancho	r size threaded r	od			M8	M10	M12	M16	M20	M24	M27	M30		
Steel fa	ailure					•								
Charac	teristic tension re	sistance	N _{Rk,s}	[kN]	A _s · f _{uk} (or see Table C1)									
Partial •	factor		γ _{Ms,N}	[-]	see Table C1									
Combi	ned pull-out and	concrete failure												
Charac holes (teristic bond resis CD)	tance in non-crac	ked concrete C	20/25 in har	nmer d	Irilled h	oles (H	ID) and	compr	essed	air drill	ed		
Temperature range	l: 40°C/24°C	concrete and		[N/mm²]	20	20	19	19	18	17	16	16		
Tempe	II: 72°C/50°C	flooded bore hole	^τ Rk,ucr,100	[14/111111-]	15	15	15	14	13	13	12	12		
Charac	teristic bond resis	tance in non-crac	ked concrete C	20/25 in har	nmer d	Irilled h	oles wi	th hollo	w drill	bit (HD	B)			
<u>e</u>	I: 40°C/24°C	Dry, wet			17	16	16	16	15	14	14	13		
nperatu range	II: 72°C/50°C	concrete		[[[[[[[[[[[[[[[[[[[[14	14	14	13	13	12	12	11		
Temperature range	I: 40°C/24°C	flooded bore	TRk,ucr,100	[N/mm²]	16	16	16	15	15	14	14	13		
Те	II: 72°C/50°C			14	14	14	13	13	12	12	11			
	teristic bond resis h hollow drill bit (F		concrete C20/2	25 in hamme	r drilled	holes	(HD) ,	compre	essed a	air drille	d holes	s (CD		
Temperature range	l: 40°C/24°C	Dry, wet concrete and	TDI 100	[N/mm²]	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5		
Tempe	II: 72°C/50°C	flooded bore hole	^τ Rk,cr,100	[14/111111]	5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5		
		•	C25/30	•	1,02									
			C30/37						04					
	sing factors for co	ncrete	C35/45						07					
Ψ_{c}			C40/50						80					
			C45/55						09					
Concre	ete cone failure		C50/60					1,	10					
	nt parameter							see Ta	ble C2					
Splittin	<u> </u>							000 10	1010 02	•				
	nt parameter							see Ta	ble C2					
	ation factor													
	and wet concrete	(HD; HDB, CD)	γ _{inst}	[-]				1	,0					
for dry														

Team Pro Injection system TP E SD+ for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 4

Table		racteristic va on for a work					atic a	ınd q	uasi-	static			
Ancho	r size threaded ro	d			M8	M10	M12	M16	M20	M24	M27	M30	
Steel fa	ilure												
Charac	teristic tension res	istance	N _{Rk,s}	[kN]	A _s · f _{uk} (or see Table C1)								
Partial f	factor		$\gamma_{Ms,N}$	[-]				see Ta	able C1				
Combii	ned pull-out and o	concrete failure	for a working l	ife of 50 ye									
	teristic bond resist	ance in non-cracl	ked concrete C2	20/25 in dia	mond o	drilled h	oles (E	DD)	T				
Temperature range	I: 40°C/24°C	Dry, wet concrete and	^τ Rk,ucr	[N/mm²]	15	14	14	13	12	12	11	11	
	II: 72°C/50°C	flooded bore hole	,		12	12	11	10	9,5	9,5	9,0	9,0	
Reducti	ion factor ψ ⁰ sus in	non-cracked cond	crete C20/25 in	diamond d	rilled ho	oles (DI	D)						
Temperature range	l: 40°C/24°C	Dry, wet concrete and	Ψ^0 sus	r 1				0,	77				
Tempe	II: 72°C/50°C	Ψ sus	[-]				0,	72					
			C25/30					04					
L	: f- f		C30/37						08				
	ing factors for con	crete	C35/45 1,12 C40/50 1,15										
Ψ_{c}			C40/50						17 17				
			C50/60		1,19								
Combin	ned pull-out and	concrete failure		ife of 100	years			,					
Charac	teristic bond resist	ance in non-cracl	ced concrete C2	20/25 in dia	mond o	drilled h	oles (E)D)					
Temperature range		^τ Rk,ucr,100	[N/mm²]	15	14	14	13	12	12	11	11		
Temp raı	II: 72°C/50°C	flooded bore hole	-RK,uCl, 100	[, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11 11 10 10 9,5 9,0 8,5 8							8,5	
			C25/30	1,04									
			C30/37	1,08									
	ing factors for con	crete	C35/45		1,12								
Ψс			C40/50 C45/55		1,15								
			C50/60		1,17 1,19								
Concre	ete cone failure		1 3 2 2 . 2 3		1,18								
	nt parameter							see Ta	able C2	·			
Splittin					•								
	nt parameter							see Ta	able C2				
	tion factor		_		_								
	and wet concrete (,	γ _{inst}	[-]				1	,0				
tor floor	ded bore hole (DD)	· iiiot	",		1,2				1,4				
Team	Pro Injection sy	stem TP E SD+	for concrete										
	erformances haracteristic values of tension loads under static and quasi-static action									Anne	x C 5	1	

Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm		'		'	•		•			
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	V ⁰ Rk,s	[kN]			0,6 •	A _s ·f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes	V ⁰ Rk,s	[kN]			0,5 •	A _s ∙ f _{uk}	(or see	Table C	1)	
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm										
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • \	N _{el} ∙ f _{uk}	(or see	Table C	(1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γMs,V	[-]				see	Table C	:1		
Concrete pry-out failure	•									
Factor	k ₈	[-]					2,0			
Installation factor	γinst	[-]					1,0			
Concrete edge failure										
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mr							
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0			

Team Pro Injection system TP E SD+ for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 6

Anchor size internal thread	ed anchor rods			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Steel failure ¹⁾										
Characteristic tension resista	nce, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123	
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Partial factor, strength class 5	5.8 and 8.8	γ _{Ms,N}	[-]			1	,5			
Characteristic tension resista Steel A4 and HCR, Strength	nce, Stainless	N _{Rk,s}	[kN]	14	14 26 41 59 110					
Partial factor		γ _{Ms,N}	[-]			1,87			2,86	
Combined pull-out and con	crete cone failu								-	
Characteristic bond resistan			ete C20/2	5 in hamn	ner drilled	holes (HD) and con	npressed a	air drilled	
l: 40°C/24°C	Dry, wet			20	19	19	18	17	16	
Temperature range II: 72°C/50°C	concrete and flooded bore hole	^τ Rk,ucr	[N/mm²]	15	15	14	13	13	12	
Characteristic bond resistanc		concrete	C20/25 in	hammer	drilled hol	es with ho	llow drill b	it (HDB)		
l: 40°C/24°C	Dry, wet			16	16	16	15	14	13	
Temperature II: 72°C/50°C	concrete		FA.1 / 27	14	14	13	13	12	11	
range I: 40°C/24°C	^τ Rk,ucr	[N/mm²]	16	16	15	15	14	13		
II: 72°C/50°C	hole			14	14	13	13	12	11	
Characteristic bond resistanc and with hollow drill bit (HDB)	· •	crete C20	/25 in han	nmer drille	ed holes (H	HD), comp	ressed air	drilled ho	les (CD)	
Temperature : 40°C/24°C	Dry, wet concrete and	^τ Rk,cr	[N/mm²]	7,0	8,5	8,5	8,5	8,5	8,5	
range II: 72°C/50°C	flooded bore hole			6,0	7,0	7,0	7,0	7,0	7,0	
Reduction factor ${\psi^0}_{ t sus}$ in cradrilled holes (CD) and with h			oncrete C	20/25 in l	hammer d	rilled hole	s (HD), co	mpressed	air	
TemperatureI: 40°C/24°C	Dry, wet concrete and	Ψ ⁰ sus	[-]	0,80						
range II: 72°C/50°C	flooded bore hole						68			
			5/30				02			
ncreasing factors for concret	e		0/37 5/45				04 07			
Pc			0/50				08			
			5/55				09			
		C5	0/60			1,	10			
Concrete cone failure										
Relevant parameter						see Ta	ble C2			
Splitting failure			1			-	hl- 00			
Relevant parameter nstallation factor						see la	ble C2			
nstallation factor or dry and wet concrete (HD;	HDB CD)					1	,0			
or flooded bore hole (HD; HD		γinst	[-]				,0 ,2			
The characteristic tension recapitation of the characteristic tension of	sher) must complesistance for steel					rty class of	f the intern		d rod.	

Z23578.21 8.06.01-14/21

Characteristic values of tension loads under static and quasi-static action

Table C8:		eristic value or a working				der stat	ic and	quasi-s	tatic		
Anchor size i	internal threade	d anchor rods			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Steel failure ¹⁾)					•	•				
Characteristic	tension resistan	ce, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123	
Steel, strength	n class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Partial factor,	strength class 5.	3 and 8.8	γ _{Ms,N}	[-]	1,5						
Characteristic tension resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾			N _{Rk,s}	[kN]	14	26	41	59	110	124	
Partial factor				[-]			1,87			2,86	
Combined pu	III-out and conc	rete cone failu	^γ Ms,N re								
Characteristic holes (CD)	c bond resistanc	e in non-crack	ed concrete	e C20/25	in hamme	er drilled l	noles (HD) and com	pressed a	air drilled	
- .	I: 40°C/24°C	Dry, wet			20	19	19	18	17	16	
Temperature range	II: 72°C/50°C	concrete and flooded bore hole	^τ Rk,ucr,100	[N/mm²]	15	15	14	13	13	12	
Characteristic	bond resistance	in non-cracked	concrete C	20/25 in h	ammer d	rilled hole	s with hol	low drill b	it (HDB)		
	I: 40°C/24°C	Dry, wet			16	16	16	15	14	13	
Temperature	II: 72°C/50°C	concrete	τ _{Rk,ucr,100}	[N/mm²]	14	14	13	13	12	11	
range	I: 40°C/24°C	flooded bore	*KK,UCI, 100	[[[]]]	16	16	15	15	14	13	
	II: 72°C/50°C	hole			14	14	13	13	12	11	
	bond resistance w drill bit (HDB)		crete C20/2	5 in hamn	ner drilled	l holes (H	D), compr	essed air	drilled ho	les (CD)	
Temperature	I: 40°C/24°C	Dry, wet concrete and	τ _{Rk,ucr,100}	[N/mm²]	6,5	7,5	7,5	7,5	7,5	7,5	
range	II: 72°C/50°C	flooded bore hole	TKK,dCl, 100	[]	5,5	6,5	6,5	6,5	6,5	6,5	
			C25	/30	1,02						
			C30					04			
_	tors for concrete		C35					07			
Ψ_{C}			C40					08			
			C45				·	09 10			
Concrete con	ne failure			700			Ι,	10			
Relevant para							see Ta	able C2			
Splitting failu											
Relevant para							see Ta	able C2			
Installation fa	actor										
for dry and we	et concrete (HD; H	IDB, CD)	20.	r 1			1	,0			
for flooded bo	re hole (HD; HDB	. CD)	γinst	[-]			1	,2			

³⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

Team Pro Injection system TP E SD+ for concrete	
Performances	Annex C 8
Characteristic values of tension loads under static and quasi-static action	

⁴⁾ For IG-M20 strength class 50 is valid

	eristic value or a working				aer stat	ic and o	quasi-s	tatic		
Anchor size internal threader	d anchor rods			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Steel failure ¹⁾					•	•	1			
Characteristic tension resistant	ce, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123	
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Partial factor, strength class 5.8	8 and 8 8	γ _{Ms,N}	[-]			1	,5			
Characteristic tension resistant										
Steel A4 and HCR, Strength cl		N _{Rk,s}	N _{Rk,s} [kN] 14 26 41 59 110						124	
Partial factor		$\gamma_{Ms,N}$	γ _{Ms,N} [-] 1,87							
Combined pull-out and conc	rete cone failu	re for a wo	rking life	of 50 yea	ars					
Characteristic bond resistanc	e in non-crack	ed concrete	e C20/25	in diamor	nd drilled	holes (DD)			
Temperature : 40°C/24°C	Dry, wet concrete and	^τ Rk,ucr	[N/mm²]	14	14	13	12	12	11	
range II: 72°C/50°C	flooded bore hole			12	11	10	9,5	9,5	9,0	
Reduction factor ψ^0_{sus} in non-	cracked concr	ete C20/25	in diamo	nd drilled	holes (DI)				
Temperature : 40°C/24°C	Dry, wet concrete and	Ψ ⁰ sus	r 1			0,	77			
range II: 72°C/50°C	flooded bore hole	Ψ sus	[-]	0,72						
		C25	/30			1,	04			
	C30		1,08							
Increasing factors for concrete		C35/45					12			
Ψ_{c}		C40					15			
		C45					17			
Combined will aut and come		C50		of 400		1,	19			
Combined pull-out and concr Characteristic bond resistance						nolos (DD)	\			
	Dry, wet		020/23							
Temperature II: 40°C/24°C III: 72°C/50°C	concrete and flooded bore	τ _{Rk,ucr,100}	[N/mm²]	14 	14	13 10	9,5	9,0	11 8,5	
11. 72 6/30 6	hole			11	10		·	9,0	0,5	
		C25					04			
Increasing factors for concrete		C30					08			
Ψ_{C}		C35					12 15			
¥C		C45					17			
		C50					19			
Concrete cone failure		•				,				
Relevant parameter						see Ta	able C2			
Splitting failure										
Relevant parameter						see Ta	able C2			
Installation factor		ı	1 1				•			
for dry and wet concrete (DD) for flooded bore hole (DD)		γ_{inst}	[-]	1,	2 1	1	,0 1	1		
Fastenings (incl. nut and v rod. The characteristic ten For IG-M20 strength class	sion resistance		 e appropria	ate materi	al and pro			ernal threa		
Team Pro Injection system Performances Characteristic values of tension			si-static act	tion				Annex C	9	

Table C10: Character	istic va	alues of	shear	loads	under	static a	nd qua	si-stati	c action
Anchor size for internal threade	ed anch	or rods		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Steel failure without lever arm ¹⁾	1								
Characteristic shear resistance,	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61
Steel, strength class	8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98
Partial factor, strength class 5.8 a	nd 8.8	γMs,∨	[-]				1,25		
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ Rk,s	[kN]	[kN] 7 13 20 30 55					
Partial factor		γ _{Ms,V}	[-]			1,56			2,38
Ductility factor		k ₇	[-]				1,0		
Steel failure with lever arm ¹⁾									
Characteristic bending moment,	5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Steel, strength class	8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519
Partial factor, strength class 5.8 a	nd 8.8	γ _{Ms,V}	[-]				1,25		
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456
Partial factor		γMs,∨	[-]			1,56			2,38
Concrete pry-out failure									
Factor		k ₈	[-]				2,0		
Installation factor		γ _{inst}	[-]				1,0		
Concrete edge failure		•	•	•					
Effective length of fastener		I _f	[mm]		min((h _{ef} ; 12 • o	d _{nom})		min(h _{ef} ; 300mm
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30
Installation factor		γ _{inst}	[-]			•	1,0	•	

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element. ²⁾ For IG-M20 strength class 50 is valid

Team Pro Injection system TP E SD+ for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 10

Table C11: Characteristic values of tension loads under static and quasi-static action for a working life of 50 years													
Anchor size reinforci		gg	<u> </u>		Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure													
Characteristic tension i	resistance	$N_{Rk,s}$	[kN]					A _s •	f _{uk} 1)				
Cross section area		As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor		γ _{Ms,N}	[-]	1,42)									
Combined pull-out an	nd concrete failu												
Characteristic bond re holes (CD)	esistance in non	-cracked co	ncrete C2	:0/25 ii	n ham	mer dr	illed h	oles (F	ID) an	d com	presse	ed air d	Irilled
Temperature II: 40°C/24°C II: 72°C/50°C	Dry, wet concrete and	[₹] Rk,ucr	[N/mm²]	16	16	16	16	16	16	15	15	15	15
	flooded bore hole		-	12	12	12	12	12	12	12	12	11	11
Characteristic bond res	sistance in non-c	racked conc	rete C20/2	5 in ha	amme	r drilled	d holes	with I	nollow	drill bi	it (HDE	3)	
<u>ဗ</u> ္ဗ <u>l</u> : 40°C/24°C	Dry, wet			14	14	13	13	13	13	13	13	13	13
II: 72°C/50°C	concrete	Ι	[N]/m==21	12	12	12	11	11	11	11	11	11	11
E	flooded bore	^τ Rk,ucr	[N/mm²]	13	13	13	13	13	13	13	13	13	13
□ II: 72°C/50°C	hole			11	11	11	11	11	11	11	11	11	11
Characteristic bond res		ed concrete	C20/25 in	hamm	er drill	ed hol	es (HE), con	npress	ed air	drilled	holes	(CD)
	<u> </u>			7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
Temperature	flooded bore hole	^τ Rk,cr [[[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0
Reduction factor ψ^0_{sui} drilled holes (CD) and	ed concre	te C20)/25 in	hamn	ner dril	led ho	les (HI	D), cor	mpress	sed air			
I: 40°C/24°C an age II: 72°C/50°C	Dry, wet concrete and	Ψ ⁰ sus	[-]	0,80									
	flooded bore hole	T Sus		0,68									
		C25	/30					1,	02				
		C30		1,04									
Increasing factors for c	concrete	C35							07				
Ψс		C40							08 09				
		C50							10				
Concrete cone failure)	, , , , ,	-	I				- ,					
Relevant parameter								see Ta	ble C	2			
Splitting													
Relevant parameter								see Ta	ble C	2			
Installation factor													
for dry and wet concret		γ _{inst}	[-]	1,0									
for flooded bore hole (H	· · · · · · · · · · · · · · · · · · ·							1	,2				
1) f _{uk} shall be taken from 2) in absence of nationa		ns ot reinforci	ng bars										
Team Pro Injection	system TP E S	D+ for con	crete										
Performances Characteristic values of tension loads under static and quasi-static action							A	nnex	C 11				

Anchor size reinforcii	ng bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure					•	•	•				•		
Characteristic tension r	resistance	$N_{Rk,s}$	[kN]					A_s •	f _{uk} 1)				
Cross section area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor		γ _{Ms,N}	[-]	1,42)									
Combined pull-out an	id concrete failu	re											
Characteristic bond re holes (CD)	esistance in non-	cracked co	ncrete C2	:0/25 i	n ham	mer dr	illed h	oles (F	ID) an	d com	presse	ed air c	Irilled
l: 40°C/24°C II: 72°C/50°C	Dry, wet concrete and	-	FN1/21	16	16	16	16	16	16	15	15	15	15
II: 72°C/50°C	flooded bore hole	^τ Rk,ucr,100	[N/mm²]	12	12	12	12	12	12	12	12	11	11
Characteristic bond res	sistance in non-ci	acked conc	rete C20/2	5 in h	ammei	r drille	d holes	with I	nollow	drill b	it (HDE	3)	
စ္ l: 40°C/24°C	Dry, wet			14	14	13	13	13	13	13	13	13	13
1: 40°C/24°C 1: 40°C/24°C 1: 40°C/24°C 1: 72°C/50°C	concrete			12	12	12	11	11	11	11	11	11	11
## ## HI: 72°C/50°C	flooded bore	^τ Rk,ucr,100	[N/mm²]	13	13	13	13	13	13	13	13	13	13
ਲੋਂ <u>II: 72°C/50°C</u>	hole			11	11	11	11	11	11	11	11	11	11
Characteristic bond res and with hollow drill bit		ed concrete	C20/25 in	hamm	er drill	ed hol	es (HE)), con	press	ed air	drilled	holes	(CD)
Temperature l: 40°C/24°C II: 72°C/50°C	Dry, wet concrete and	^τ Rk,cr,100	[N/mm²]	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5
He H	flooded bore hole	*RK,Cr, TOU	[[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5
		C25		1,02									
		C30,		1,04									
Increasing factors for c Ψ_c	oncrete	C35,							07 08				
ΨС		C40,							08 09				
		C50							10				
Concrete cone failure	,							· · · · ·					
Relevant parameter								see Ta	ble C	2			
Splitting													
Relevant parameter							:	see Ta	ble C	2			
Installation factor		I											
for dry and wet concret		γinst	[-]						,0				
for flooded bore hole (F	· · · · · · · · · · · · · · · · · · ·							1	,2				
¹⁾ f _{uk} shall be taken fron ²⁾ in absence of nationa		s of reinforci	ng bars										

Team Pro Injection system TP E SD+ for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 12

	naracteristic tion for a wo						stati	c and	d qua	asi-st	tatic			
Anchor size reinforci							Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Steel failure														
Characteristic tension	resistance	N _{Rk,s}	[kN]					A _s ·	f _{uk} 1)					
Cross section area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804	
Partial factor		γ _{Ms,N}	[-]					1,	4 ²⁾			ı		
Combined pull-out ar	nd concrete failu			of 50	years			<u> </u>						
Characteristic bond re	esistance in non	-cracked co	ncrete C2	20/25 i	n diam	ond d	rilled h	oles (l	DD)					
II: 40°C/24°C	Dry, wet concrete and	Tou	[N/mm²]	14	13	13	13	12	12	11	11	11	11	
II: 72°C/50°C	flooded bore hole	[₹] Rk,ucr	[14/11111]	11	11	10	10	10	9,5	9,5	9,5	9,0	9,0	
Reduction factor ψ ⁰ su	_s in non-cracked	d concrete C	20/25 in o	diamor	nd drill	ed hol	es (DE))						
l: 40°C/24°C	[-]						77 72							
F		COE	/20						0.4					
		C25,							04 08					
Increasing factors for o	concrete	C35												
$\Psi_{\mathbf{c}}$		C40		1,12 1,15										
		C45	/55						17					
		C50	/60					1,	19					
Combined pull-out ar	nd concrete failu	ire for a wo	rking life	of 100	years	3								
Characteristic bond re	esistance in non	-cracked co	ncrete C2	20/25 i	n diam	ond d	rilled h	oles (l	DD)					
Dangerature II: 40°C/24°C	Dry, wet concrete and	^τ Rk,ucr,100	[N/mm²] -	14	13	13	13	12	12	11	11	11	11	
الله 72°C/50°C	flooded bore hole	KK,UCI, 100	[11	10	10	10	9,5	9,0	9,0	9,0	8,5	8,5	
		C25	/30					1,	04					
		C30,	/37	1,08										
Increasing factors for c	concrete	C35							12					
Ψc		C40		1,15 1,17										
		C45,												
Concrete cone failure	<u> </u>	L C30,	700	<u> </u>				Ι,	19					
Relevant parameter	•							see Ta	able C	2				
Splitting				<u> </u>				200 10						
Relevant parameter								see Ta	able C	2				
Installation factor				I						•				
for dry and wet concre	te (DD)	Ī.,						1	,0					
for flooded bore hole (I	• •	γinst	[-]		1	,2				1	,4			
1) f _{uk} shall be taken from 2) in absence of nationa	al regulation													
Team Pro Injection system TP E SD+ for concrete Performances Characteristic values of tension loads under static and quasi-si				itic acti	on					Aı	nnex	C 13	3	

Table C14: Characteris	tic values	of she	ar lo	ads ı	unde	er sta	atic a	ınd q	ıuasi-	static	actio	า
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			•	1	•	•		•		•	•	
Characteristic shear resistance	V ⁰ Rk,s	[kN]					0,5	· A _s ·	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]		1	•	•		1,5 ²⁾		•	•	
Ductility factor	k ₇	[-]						1,0				
Steel failure with lever arm		•	•									
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]					1.2	• W _{el}	• f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]		1				1,5 ²⁾			•	•
Concrete pry-out failure	-	•	•									
Factor	k ₈	[-]						2,0				
Installation factor	γ _{inst}	[-]						1,0				
Concrete edge failure		•	•									
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm)									
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γ_{inst}	[-]		•	•	•	•	1,0		•	•	•

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Team Pro Injection system TP E SD+ for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 14

Table C15:	Displacements under tension load ¹⁾ in hammer drilled holes (HD),
	compressed air drilled holes (CD) and with hollow drill bit (HDB)

Anchor size threaded ro	od		M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked concrete ι	ınder static a	ınd quasi-static a	ction fo	r a work	ing life	of 50 an	d 100 ye	ars		
	δ_{N0} -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,038	0,039	0,040	0,044	0,047	0,051	0,052	0,055
72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,047	0,049	0,051	0,055	0,059	0,064	0,067	0,070
Cracked concrete unde	r static and c	juasi-static actio	n for a w	orking l	ife of 50	and 100) years			
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,082
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,100	0,115	0,122	0,128	0,135	0,142	0,155	0,171
	δ_{N0} -factor	[mm/(N/mm²)]	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,110
72°C/50°C	$\delta_{ extsf{N}\infty}$ -factor	[mm/(N/mm²)]	0,134	0,154	0,163	0,172	0,181	0,189	0,207	0,229

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0}}\text{-factor} \ \cdot \tau; \\ \delta_{\text{N}\infty} &= \delta_{\text{N}\infty}\text{-factor} \ \cdot \tau; \end{split}$$

 τ : action bond stress for tension

Table C16: Displacements under tension load¹⁾ in diamond drilled holes (DD)

Anchor size threaded re	Anchor size threaded rod			M10	M12	M16	M20	M24	M27	M30
Non-cracked concrete	under static a	and quasi-static a	ction fo	r a work	ing life	of 50 yea	ars			
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,011	0,012	0,012	0,013	0,014	0,014	0,015	0,015
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,018	0,019	0,019	0,020	0,022	0,023	0,024	0,025
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,014	0,014	0,015	0,016	0,016	0,018	0,018
72°C/50°C	$\delta_{ extsf{N}\infty}$ -factor	[mm/(N/mm²)]	0,052	0,053	0,055	0,058	-,,,	0,068	0,070	
Non-cracked concrete ι	ınder static a	nd quasi-static a	ction for	a worki	ng life c	of 100 ye	ears			
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,011	0,012	0,012	0,013	0,014	0,014	0,015	0,015
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,020	0,021	0,021	0,023	0,024	0,025	0,026	0,027
Temperature range II: δ _{N0} -fa	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,014	0,014	0,015	0,016	0,016	0,018	0,018
72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,038	0,039	0,040	0,043	0,045	0,047	0,049	0,051

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C17: Displacements under shear load¹⁾ for all drilling methods

Anchor size threaded rod				M10	M12	M16	M20	M24	M27	M30
Non-cracked and cracked concrete under static and quasi-static action										
All temperature	$\delta_{ m V0}$ -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{ extsf{V}\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V^{\infty}} = \delta_{V^{\infty}} \text{-factor } \cdot V;$

Team Pro	Injection	system	TP E	SD+ for	r concrete

Performances

Displacements under static and quasi-static action (threaded rods)

Annex C 15

Table C18:	Displacements under tension load ¹⁾ in hammer drilled holes (HD),
	compressed air drilled holes (CD) and with hollow drill bit (HDB)

Anchor size Internal thro	eaded anchor i	rod	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Non-cracked concrete u								10 11120
Temperature range I:	$\delta_{ extsf{N0}}$ -factor	[mm/(N/mm²)]	0,029	0,030	0,033	0,035	0,038	0,041
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,029	0,030	0,033	0,035	0,038	0,041
Temperature range II:	$\delta_{ extsf{N0}}$ -factor	[mm/(N/mm²)]	0,039	0,040	0,044	0,047	0,051	0,055
72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,049	0,051	0,055	0,059	0,064	0,070
Cracked concrete under	static and qua	si-static action	for a work	ing life of	50 and 100	years		
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,071	0,072	0,074	0,076	0,079	0,082
40°C/24°C	$\delta_{ extsf{N}\infty}$ -factor	[mm/(N/mm²)]	0,115	0,122	0,128	0,135	0,142	0,171
Temperature range II:	$\delta_{ extsf{N0}}$ -factor	[mm/(N/mm²)]	0,095	0,096	0,099	0,102	0,106	0,110
72°C/50°C	$\delta_{ extsf{N}\infty}$ -factor	[mm/(N/mm²)]	0,154	0,163	0,172	0,181	0,189	0,229

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C19: Displacements under tension load¹⁾ in diamond drilled holes (DD)

Anchor size Internal thr	eaded anchor	rod	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Non-cracked concrete u	ınder static an	d quasi-static ac	tion for a v	working lif	e of 50 yea	irs		
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,012	0,012	0,013	0,014	0,014	0,015
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,019	0,019	0,020	0,022	0,023	0,025
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,014	0,014	0,015	0,016	0,016	0,018
72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,053	0,055	0,058	0,062	0,065	0,070
Non-cracked concrete u	ınder static an	d quasi-static ac	tion for a v	working lif	e of 100 ye	ars		
Temperature range I:	$\delta_{ extsf{N0}} extsf{-factor}$	[mm/(N/mm²)]	0,012	0,012	0,013	0,014	0,014	0,015
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,021	0,021	0,023	0,024	0,025	0,027
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,014	0,014	0,015	0,016	0,016	0,018
72°C/50°C	$\delta_{ extsf{N}\infty}$ -factor	[mm/(N/mm²)]	0,039	0,040	0,043	0,045	0,047	0,051

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C20: Displacements under shear load¹⁾ for all drilling methods

Anchor size Internal threaded anchor rod			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Non-cracked and cracked concrete under static and quasi-static action								
All temperature ranges	$\delta_{ m V0}$ -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04
	$\delta_{ m V}$ -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V^{\infty}} = \delta_{V^{\infty}}\text{-factor }\cdot V;$

Team Pro Injection system TP E SD+ for concrete	
Performances Displacements under static and quasi-static action (Internal threaded anchor rod)	Annex C 16

Table C21:	Displacements under tension load ¹⁾ in hammer drilled holes (HD),
	compressed air drilled holes (CD) and with hollow drill bit (HDB)

Anchor size reinfo	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Non-cracked concrete under static and quasi-static action for a working life of 50 and 100 years												
Temp range I: 40°C/24°C	$\delta_{ extsf{N0}}$ -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,031	0,033	0,035	0,038	0,038	0,040	0,043
	$\delta_{ extsf{N}\infty}$ -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,031	0,033	0,035	0,038	0,038	0,040	0,043
Temp range II:	$\delta_{ extsf{N0}}$ -factor	[mm/(N/mm²)]	0,038	0,039	0,040	0,042	0,044	0,047	0,051	0,051	0,054	0,058
72°C/50°C	$\delta_{ extsf{N}\infty}$ -factor	[mm/(N/mm²)]	0,047	0,049	0,051	0,053	0,055	0,059	0,065	0,065	0,068	0,072
Cracked concrete	under statio	and quasi-stat	ic actio	n for a	workin	g life of	f 50 and	1 100 ye	ears			
Temp range I:	$\delta_{ extsf{N0}}$ -factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,073	0,074	0,076	0,079	0,079	0,081	0,084
40°C/24°C	$\delta_{ extsf{N}\infty}$ -factor	[mm/(N/mm²)]	0,115	0,122	0,128	0,135	0,142	0,155	0,171	0,171	0,181	0,194
Temp range II: 72°C/50°C	$\delta_{ extsf{N0}}$ -factor	[mm/(N/mm²)]	0,092	0,095	0,096	0,098	0,099	0,102	0,106	0,106	0,109	0,113
	$\delta_{ extsf{N}\infty}$ -factor	[mm/(N/mm²)]	0,154	0,163	0,172	0,181	0,189	0,207	0,229	0,229	0,242	0,260

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$ τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C22: Displacements under tension load¹⁾ in diamond drilled holes (DD)

Anchor size reinfo	Anchor size reinforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Non-cracked cond	rete under s	static and quasi	-static a	action f	or a wo	rking l	ife of 50) years				
Temp range I: 40°C/24°C	$\delta_{ extsf{N0}}$ -factor	[mm/(N/mm²)]	0,008	0,009	0,009	0,01	0,011	0,012	0,013	0,013	0,014	0,015
	$\delta_{ extsf{N}\infty}$ -factor	[mm/(N/mm²)]	0,018	0,018	0,019	0,020	0,021	0,024	0,027	0,027	0,028	0,031
Temp range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,009	0,011	0,011	0,012	0,013	0,014	0,015	0,015	0,016	0,018
72°C/50°C	$\delta_{ extsf{N}\infty}$ -factor	[mm/(N/mm²)]	0,048	0,051	0,054	0,058	0,061	0,068	0,076	0,076	0,081	0,088
Non-cracked cond	rete under s	static and quasi	-static a	action f	or a wo	rking l	ife of 10	00 years	S			
Temp range I:	$\delta_{ extsf{N0}}$ -factor	[mm/(N/mm²)]	0,008	0,009	0,009	0,010	0,011	0,012	0,013	0,013	0,014	0,015
40°C/24°C	$\delta_{ extsf{N}\infty}$ -factor	[mm/(N/mm²)]	0,018	0,020	0,021	0,022	0,024	0,026	0,029	0,029	0,031	0,034
Temp range II: 72°C/50°C	$\delta_{ extsf{N0}} extsf{-factor}$	[mm/(N/mm²)]	0,009	0,011	0,011	0,012	0,013	0,014	0,015	0,015	0,016	0,018
	$\delta_{ extsf{N}\infty}$ -factor	[mm/(N/mm²)]	0,035	0,037	0,040	0,042	0,045	0,049	0,055	0,055	0,059	0,064

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$ τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor } \cdot \tau;$

Table C23: Displacements under shear load¹⁾ for all drilling methods

Anchor size rein	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Non-cracked and cracked concrete under static and quasi-static action												
All temperature	$\delta_{ extsf{V0}}$ -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V; V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor} \cdot V;$

Team Pro Injection system TP E SD+ for concrete	
Performances Displacements under static and quasi-static action (rebar)	Annex C 17

Table C24:	Characteristic values of tension load (performance category C1) for a world						ırs
Anchor size thre	M8	M10	M12	M16	M20	M2	

Anchor size threaded rod	M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure										
Characteristic tension resistance	N _{Rk,s,eq,C1}	[kN]	1,0 • N _{Rk,s}							
Partial factor	γ _{Ms,N}	[-]	see Table C1							

Combined pull-out and concrete failure

Characteristic bond resistance in cracked and non-cracked concrete C20/25 in hammer drilled holes (HD), compressed air drilled holes (CD) and with hollow drill bit (HDB)

drilled holes (CD) and with hollow drill bit (HDB)												
emperat re range	l: 40°C/24°C	Dry, wet concrete and	^τ Rk,eq,C1	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5
트		flooded bore hole	^τ Rk,eq,C1	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0
Increasing factors for concrete $\psi_{\mathbf{C}}$		C25/30 to C50/60 1,0										
Installation factor												
for dry and wet concrete (HD; HDB, CD)		26.	r 1	1,0								
for floo	for flooded bore hole (HD; HDB, CD)		γ inst	[-]	1,2							

Table C25: Characteristic values of shear loads under seismic action (performance category C1)

Anchor size threaded rod				M10	M12	M16	M20	M24	M27	M30
Steel failure										
Characteristic shear resistance (Seismic C1)	V _{Rk,s,eq,C1}	[kN]	0,70 • V ⁰ _{Rk,s}							
Partial factor	γ _{Ms,V}	[-]	see Table C1							
Factor for annular gap	$\alpha_{\sf gap}$	[-]	0,5 (1,0)1)							

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended.

Team Pro Injection system TP E SD+ for concrete	
Performances Characteristic values of tension and shear loads under seismic action (performance category C1) for a working life of 50 and 100 years (threaded rod)	Annex C 18

1,2

Table C26: Characteristic values of tension loads under seismic action (performance category C1) for a working life of 50 and 100 years

Anchor size reinforcing bar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Steel f	ailure													
Charac	cteristic tension re	esistance	N _{Rk,s,eq,C1}	[kN]					1,0 • A	s • f _{uk}	1)			
Cross	section area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial	factor		γ _{Ms,N}	[-]				•	1,	4 ²⁾				•
Combi	ined pull-out an	d concrete failu	ire	•										
	cteristic bond res holes (CD) and v		ed and non-cracked concrete C20/25 in hammer drilled holes (HD), compressed a bit (HDB)					d air						
rature ge	I: 40°C/24°C	Dry, wet	^τ Rk,eq,C1	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
Temperature range	II: 72°C/50°C	flooded bore hole	^τ Rk,eq,C1	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0
Increasing factors for concrete ψ _C C25/30 to C50/60					1,0									
Installation factor														
for dry and wet concrete (HD; HDB, CD)			1,0											
for flooded bore hole (HD: HDB, CD)		^γ inst	[-]					1	2					

for flooded bore hole (HD; HDB, CD)

Table C27: Characteristic values of shear loads under seismic action (performance category C1)

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic shear resistance V _{Rk,s,eq,C1} [kN]			0,35 • A _s • f _{uk} ¹⁾									
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor $\gamma_{Ms,V}$ [-] 1,5 ²⁾												
Factor for annular gap $\alpha_{ m gap}$ [-]						0	5 (1,0)3)				

¹⁾ fuk shall be taken from the specifications of reinforcing bars

Team Pro Injection system TP E SD+ for concrete	
Performances Characteristic values of tension and shear loads under seismic action (performance category C1) for a working life of 50 and 100 years (rebar)	Annex C 19

Z23578.21 8.06.01-14/21

¹⁾ fuk shall be taken from the specifications of reinforcing bars

²⁾ in absence of national regulation

²⁾ in absence of national regulation

³⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended.

Table C28: Characteristic values of tension loads under seismic action (performance category C2) for a working life of 50 and 100 years

Anchor size threaded rod			M12	M16	M20	M24
Steel failure						
Characteristic tension resistance, Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70	N _{Rk,s,eq,C2}	[kN]		1,0 •	$N_{Rk,s}$	
Partial factor	$\gamma_{Ms,N}$	[-]		see Ta	ble C1	
Combined pull-out and concrete fail	ure					

Characteristic bond resistance in cracked and non-cracked concrete C20/25 in hammer drilled holes (HD), compressed air drilled holes (CD) and with hollow drill bit (HDB)

arillea i	drilled notes (CD) and with notiow drill bit (HDB)							
emperat re range	I: 40°C/24°C	Dry, wet concrete and	^τ Rk,eq,C2	[N/mm²]	5,8	4,8	5,0	5,1
Tem ure r	II: 72°C/50°C	flooded bore hole	^τ Rk,eq,C2	[N/mm²]	5,0	4,1	4,3	4,4
Increasing factors for concrete ψ _C		C25/30 to C50/60 1,0						
Installa	ation factor							
for dry and wet concrete (HD; HDB, CD)				1,0				
for flooded bore hole (HD; HDB, CD)		γ inst	[-]	1,2				
1								

Table C29: Characteristic values of shear loads under seismic action (performance category C2)

Anchor size threaded rod			M12	M16	M20	M24
Steel failure						
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70	$V_{Rk,s,eq,C2}$	[kN]		0,70 •	$V^0_{Rk,s}$	
Partial factor	$\gamma_{Ms,V}$	[-]		see Ta	able C1	
Factor for annular gap	$\alpha_{\sf gap}$	[-]		0,5 (1,0)1)	

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended.

Team Pro Injection system TP E SD+ for concrete	
Performances Characteristic values of tension and shear loads under seismic action (performance category C2) for a working life of 50 and 100 years (threaded rod)	Annex C 20

Z23578.21 8.06.01-14/21

Table C30:	Table C30: Displacements under tension load (threaded rod)								
Anchor size thread	Anchor size threaded rod M12 M16 M20 M24								
Non-cracked and c	Non-cracked and cracked concrete under seismic action (performance category C2)								
All temperature	All temperature δ _{N,eq,C2(DLS)} [mm] 0,21 0,24 0,27 0,36								
ranges	$\delta_{\text{N,eq,C2(ULS)}}$	[mm]	0,54	0,51	0,54	0,63			

Table C31: Displacements under shear load (threaded rod)

Anchor size threa	ided rod	M12	M16	M20	M24	
Non-cracked and	cracked concrete	ınder seismic act	ion (performand	ce category C2)		
All temperature	δ V,eq,C2(DLS)	[mm]	3,1	3,4	3,5	4,2
ranges	$\delta_{V,eq,C2(ULS)}$	[mm]	6,0	7,6	7,3	10,9

Team Pro Injection system TP E SD+ for concrete	
Performances Displacements under seismic action (performance category C2) (threaded rods)	Annex C 21

Z23578.21 8.06.01-14/21

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0171 of 4 March 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Team Pro Injection system TP E SD+ for rebar connection

Systems for post-installed rebar connections with mortar

TEAM PRO INTERNATIONAL FZ-LLC Office No 1006A, Bldg No A2 PO BOX 41010, RAK Vereinigte Arabische Emirate

Team Pro Plant, Germany

22 pages including 3 annexes which form an integral part of this assessment

EAD 330087-00-0601, Edition 05/2018

European Technical Assessment ETA-21/0171

Page 2 of 22 | 4 March 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-21/0171

Page 3 of 22 | 4 March 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Team Pro Injection System TP E SD+ for rebar connection" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 40 mm or the tension anchor from sizes M12 to M24 according to Annex A and injection mortar TP E SD+ are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connection of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 2 and C 3

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-00-0601, the applicable European legal act is: [96/582/EC].

The system(s) to be applied is (are): 1

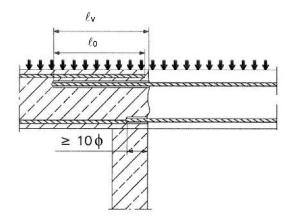
European Technical Assessment ETA-21/0171

Page 4 of 22 | 4 March 2021

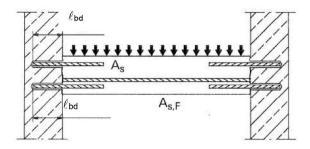
English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

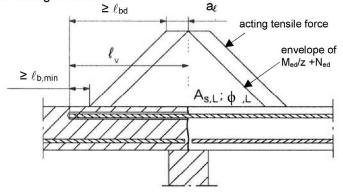
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

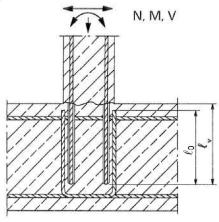

Issued in Berlin on 4 March 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin beglaubigt: Baderschneider



Installation post installed rebar


Figure A1: Overlapping joint for rebar connections of slabs and beams


Figure A3: End anchoring of slabs or beams (e.g. designed as simply supported)

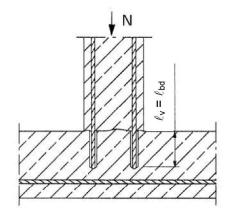

Figure A5: Anchoring of reinforcement to cover the line of acting tensile force

Figure A2: Overlapping joint at a foundation of a wall or column where the rebars are stressed in tension

Figure A4: Rebar connection for components stressed primarily in compression. The rebars sre stressed in compression

Note to Figure A1 to A5:

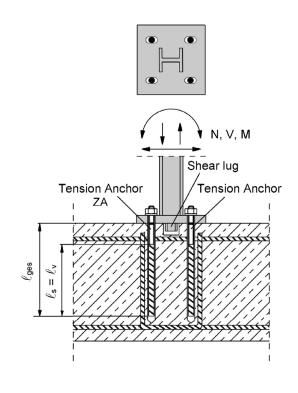
In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2004+AC:2010.

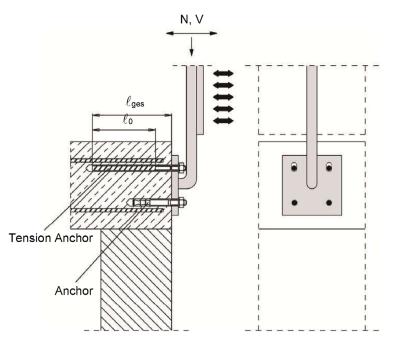
Preparing of joints according to Annex B 2

Team Pro Injection system	TP E SD+ for rebar connection

Product description

Installed condition and examples of use for rebars


Annex A 1



Installation tension anchor ZA

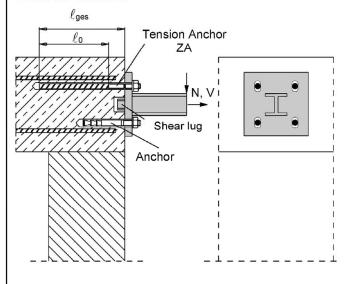
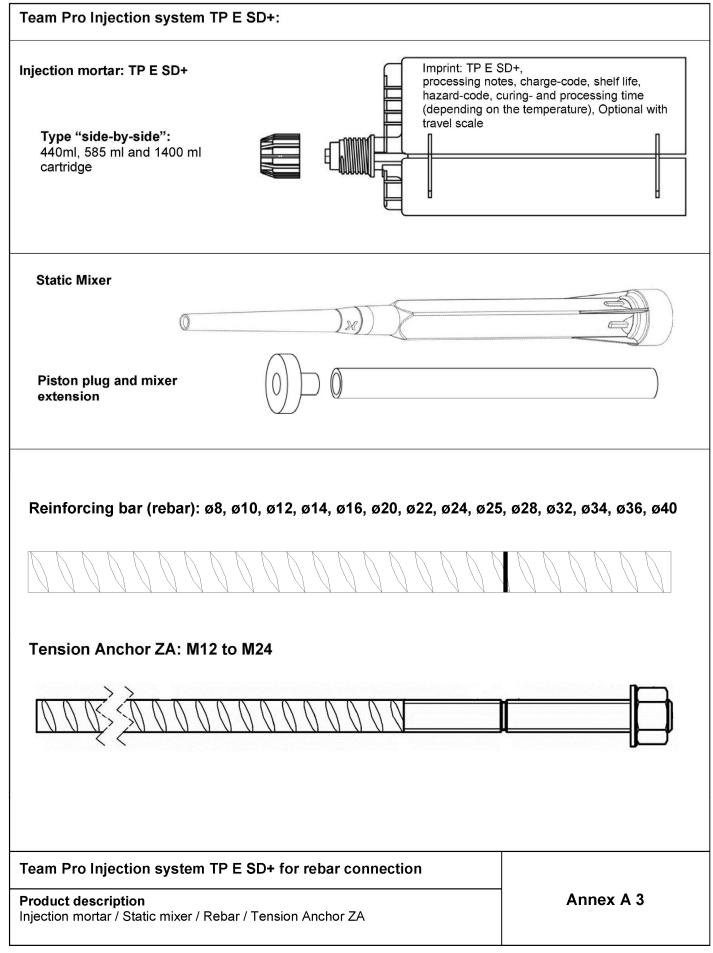

Figure A6: Overlapping joint of a column stressed in bending to a foundation

Figure A7: Overlap joint for the anchorage of barrier posts

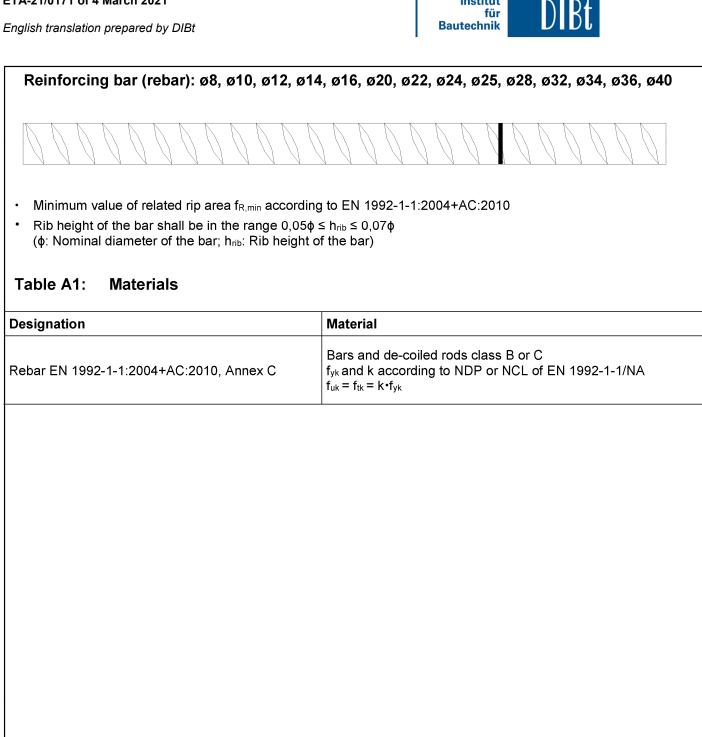
Figure A8: Overlap joint for the anchorage to centilever members

Note to Figure A6 to A8:

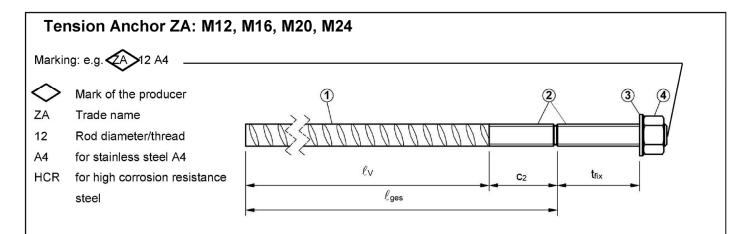
In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2002+AC:2010


Team Pro	Injection system	TP E SD+ for reb	ar connection
----------	------------------	------------------	---------------

Product description


Installed condition and examples of use for tension anchors ZA

Annex A 2



Team Pro Injection system TP E SD+ for rebar connection	
Product description Materials Rebar	Annex A 4

Table A2: Materials

		Material											
Part	Designation	ZA vz			ZA A4			ZA HCR					
		M12	M16	M20	M24	M12	M16	M20	M24	M12	M16	M20	M24
1	Reinforcement bar	Class B according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$											
2	Threaded rod	to EN	zinc pla 10087:1 263:200	998 or	ording	1.4401		l, 1.4362 4, 1.457 014		steel, 1	orrosion 1.4529, 088-1:2		nt
	f _{yk} [N/mm²]		64	40			640		560		640		560
3	Washer	Steel, zinc plated according						High corrosion resistant					
4	Nut	1	to EN 10087:1998 or EN 10263:2001			1.4401, 1.4404, 1.4571, EN 10088-1:2014		steel, 1.4529, 1.4565, EN 10088-1:2014					

Table A3: Dimensions and installation parameter

Size				ZA-M12	ZA-M16	ZA-M20	ZA-M24
Diameter of threaded rod		ds	[mm]	12	16	20	24
Diameter of reinfor	cement bar	ф	[mm]	12	16	20	25
Drill hole diameter		do	[mm]	16	20	25	32
Diameter of cleara	nce hole in fixture	df	[mm]	14	18	22	26
With across nut flats		sw	[mm]	19	24	30	36
Stress area		As	[mm²]	84	157	245	353
Effective embedme	ent depth	$\ell_{\mathbf{v}}$	[mm]		according to st	atic calculation	
Length of bonded	plated		[mama]	≥ 20	≥ 20	≥ 20	≥ 20
thread	A4/HCR	C 2	[mm]	≥ 100	≥ 100	≥ 100	≥ 100
Minimum thickness of fixture		t _{fix}	[mm]	5	5	5	5
Maximum thickness of fixture		t _{fix}	[mm]	3000	3000	3000	3000
Maximum installati	on torque	T _{max}	[Nm]	50	100	150	150

Team Pro Injection system TP E SD+ for rebar connection	
Product description Specifications Tension Anchor ZA	Annex A 5

Specifications of intended use

Anchorages subject to:

- · Static and quasi-static loads.
- Fire exposure

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013 + A1:2016.
- Strength classes C12/15 to C50/60 according to EN 206:2013 + A1:2016.
- Maximum chloride content of 0,40% (CL 0.40) related to the cement content according to EN 206:2013 + A1:2016.
- Non-carbonated concrete.

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar.

The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010.

The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Temperature Range:

• - 40°C to +80°C (max. short term temperature +80°C and max long term temperature +50°C).

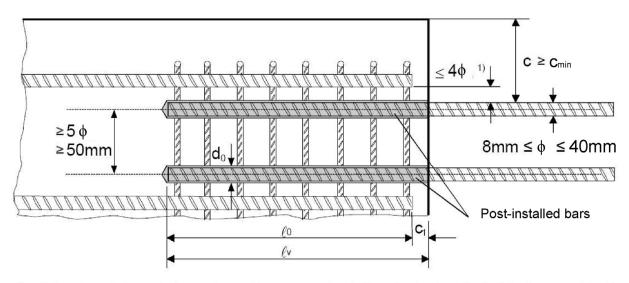
Use conditions (Environmental conditions) with tension anchor ZA:

- Structures subject to dry internal conditions or subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist
 - (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).
- Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- · Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010, EN 1992-1-2:2004+AC:2008 and Annex B 2 and B 3.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:


- · Drv or wet concrete.
- · It must not be installed in flooded holes.
- · Hole drilling by hammer drill (HD), hollow drill (HDB), diamond drill (DD) or compressed air drill (CD).
- The installation of post-installed rebar resp. tension anchors shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

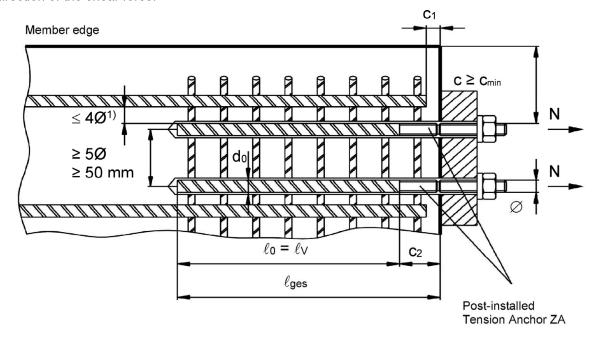
Team Pro Injection system TP E SD+ for rebar connection	
Intended use Specifications	Annex B 1

Figure B1: General construction rules for post-installed rebars

- · Only tension forces in the axis of the rebar may be transmitted
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

1) If the clear distance between lapped bars exceeds 4φ, then the lap length shall be increased by the difference between the clear bar distance and 4φ.

The following applies to Figure B1:


- c concrete cover of post-installed rebar
- concrete cover at end-face of existing rebar
- c_{min} minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
- φ diameter of post-installed rebar
- ℓ_0 lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- $\ell_{\rm v}$ effective embedment depth, $\geq \ell_0$ + c₁
- d₀ nominal drill bit diameter, see Annex B 4

Team Pro Injection system TP E SD+ for rebar connection	
Intended use General construction rules for post-installed rebars	Annex B 2

Figure B2: General construction rules for tension anchors ZA

- · The length of the bonded-in thread may be not be accounted as anchorage
- · Only tension forces in the direction of the bar axis may be transmitted by the tension anchor ZA
- · The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transfer of shear forces shall be ensured by appropriate additional measures, e.g shear lugs or by anchors with an European technical assessment.
- In the anchor plate, the holes for the tension anchors shall be executed as elongated holes with axis in the direction of the shear force.

1) If the clear distance between lapped bars exceeds 4φ, then the lap length shall be increased by the difference between the clear bar distance and 4φ.

The following applies to Figure B2:

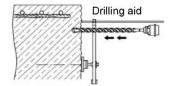
c concrete cover of tension anchor ZA

concrete cover at end-face of existing rebar

c₂ Length of bonded thread

c_{min} minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2

φ diameter of tension anchor


 ℓ_0 lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3

 $\begin{array}{ll} \ell_v & \text{effective embedment depth,} \geq \ell_0 + c_1 \\ \ell_{ges} & \text{overall embedment depth,} \geq \ell_0 + c_2 \\ d_0 & \text{nominal drill bit diameter, see Annex B 4} \end{array}$

Team Pro Injection system TP E SD+ for rebar connection	
Intended use General construction rules for tension anchors	Annex B 3

Table B1: Minimum concrete cover min c¹⁾ of post-installed rebar and tension anchor ZA depending of drilling method

Drilling method	Rebar diameter	Without drilling aid	With drilling aid
Hammer drilling (HD)	< 25 mm	30 mm + 0,06 · $\ell_{\rm v}$ ≥ 2 ϕ	30 mm + 0,02 · $\ell_{\rm V}$ ≥ 2 ϕ
Hollow drilling (HDB)	≥ 25 mm	40 mm + 0,06 · $\ell_{\rm v}$ ≥ 2 ϕ	40 mm + 0,02 · $\ell_{\rm v}$ ≥ 2 ϕ
Diamond drilling (DD)	< 25 mm	Drill rig used as drilling aid	30 mm + 0,02 · ℓ_{V} ≥ 2 ϕ
	≥ 25 mm	Drill rig used as drilling ald	40 mm + 0,02 · $\ell_{\rm V}$ ≥ 2 ϕ
Compressed air drilling (CD)	< 25 mm	50 mm + 0,08 · ℓ _v	50 mm + 0,02 · ℓ _v
Compressed air drilling (CD)	≥ 25 mm	60 mm + 0,08 · ℓ _v	60 mm + 0,02 · ℓ _v

¹⁾ see Annex B 2, Figure B1 and Annex B 3, Figure B2
Comments: The minimum concrete cover acc. EN 1992-1-1:2004+AC:2010 must be observed

Table B2: maximum embedment depth $\ell_{v,max}$

Rebar	Tension anchor	HD / CD / DD	HDB
ф	ф	$\ell_{ m v,max}$ [mm]	$\ell_{ m v,max}$ [mm]
8 mm		800	800
10 mm		1000	1000
12 mm	ZA-M12	1200	1000
14 mm		1400	1000
16 mm	ZA-M16	1600	1000
20 mm	ZA-M20	2000	1000
22 mm		2000	1000
24 mm		2000	1000
25 mm	ZA-M24	2000	1000
28 mm		2000	1000
32 mm		2000	1000
34 mm		2000	-
36 mm		2000	-
40 mm		2000	-

Table B3: Base material temperature, gelling time and curing time

Concrete temperature	Gelling- / working time ¹⁾	Minimum curing time in dry concrete	Minimum curing time in wet concrete	
	t _{gel}	t _{cure,dry}	t _{cure,wet}	
+ 5 °C to + 9°C	80 min	48 h	96 h	
+ 10 °C to + 14°C	60 min	28 h	56 h	
+ 15 °C to + 19°C	40 min	18 h	36 h	
+ 20 °C to + 24°C	30 min	12 h	24 h	
+ 25 °C to + 34°C	12 min	9 h	18 h	
+ 35 °C to + 39°C	8 min	6 h	12 h	
+40 °C	8 min	4 h	8 h	
Cartridge temperature	+5°C to +40°C			

¹⁾ t_{gel}: maximum time from starting of mortar injection to completing of rebar setting.

Team Pro Injection system TP E SD+ for rebar connection	
Intended use Minimum concrete cover Maximum embedment depth	Annex B 4

Table B4: Dispensi	ng tools							
Cartridge type/size	Hai	nd tool	Pneumatic tool					
Side-by-side cartridges 440, 585 ml	e.g. SA 296C585	e.g. Typ H 244 C	e.g. Typ TS 444 KX					
Side-by-side	-	C.g. Typ 11 244 O	e.g. Typ 13 444 100					
cartridges 1400 ml	-	-	e.g. Typ TS 471					
Cleaning and install	Cleaning and installation tools							
The hollow drill bit syste a class M vacuum with r	HDB – Hollow drill bit system The hollow drill bit system contains the Heller Duster Expert hollow drill bit and a class M vacuum with minimum negative pressure of 253 hPa and flow rate of minimum 150 m³/h (42 l/s).							
Brush RB:	L	SDS Plus Ar	lanter:					
	SDS Plus Adapter:							
Brush extension:								
Rec. compressed air tool hand slide valve (min 6 bar)								
Team Pro Injection sy	stem TP E SD+ for reba	ar connection						
Intended Use Dispensing, cleaning and	installation tools		Annex B 5					

RB18 20,0 |

RB20 22,0

RB25 27,0

RB28 30,0

RB32 34,0

RB35 37,0

RB40 43,5

RB45 47,0

RB52 54,0

55 |RB55 | 58,0

26 |RB26 | 28,0

18

20

28

32

35

40

45 52

55

25

14

16

20

22

28 32/34

36

40

ZA-M16

ZA-M20

24/25 ZA-M24

1300

1000

1400

1600

2000

VL16/1,8

VL10/0,75

or

VL16/1,8

Tab	Table B5: Brushes, piston plugs, max anchorage depth and mixer extension, hammer (HD), diamond (DD) and compressed air (CD) drilling														
			Drill				d _{b,min}		Ca	artridge: 440	ml or	585 ml	Cartride	ge: 1400 ml	
Bar size	Tension anchor	ł	oit - ƙ		d₀ Brush - Ø		min. Brush -	h - Piston	Hand or battery tool		Pneumatic tool		matic tool	Pneumatic tool	
ф	ф	HD	DD	CD	1	11 - 20	Ø	plug	$I_{v,max}$	Mixer extension	$I_{v,max}$	Mixer extension	I _{v,max}	Mixer extension	
[mm]	[mm]		[m	m]		[mm]	[mm]		[mm]		[mm]		[mm]		
8	-	1	0	-	RB10	11,5	10,5	-	250		250		250		
0	-		2		RB12	12.5	10.5		700		800		800	VL10/0,75	
10	-	'	2	-	KD12	13,5	12,5	-	250		250		250	or	
10	-		4		DD44	4 E E	115	VC44	700		1000		1000	VL16/1,8	
		1 I	4	-	IKB 14	15,5	14,5	VS14	050	1	250		252		
40	74 1440		-			_ ′	′		250		250		250		
12	ZA-M12		16		RB16	17,5	16,5	VS16	250	VL10/0,75	250		1200		

700

500

or

VL16/1,8

18,5 | VS18 |

20,5

25,5

26,5

28,5

32,5

35,5

40,5

45,5

52,5

55,5

VS20

VS25

VS25

VS28

VS32

VS35

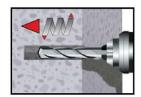
VS40

VS45

VS52

VS55

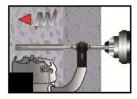
Table B6: Brushes, piston plugs, max anchorage depth and mixer extension, hammer drilling with hollow drill bit system (HDB)


		Drill		d _{b,min}	b _{,min} Cartridge: 440 ml or 585 ml					Cartridge: 1400 ml		
Bar size	Tension anchor	bit - Ø	d _b Brush - Ø	d _b min.			or battery tool	Pneu	matic tool	Pneu	matic tool	
ф	ф	HDB	2146.1. 2	Ø	plug	I _{v,max}	Mixer extension	$I_{v,max}$	Mixer extension	I _{v,max}	Mixer extension	
[mm]	[mm]	[mm]				[mm]		[mm]		[mm]		
8	-	10			-	250		250		250		
	-	12			_	700		800		800		
10	-	12			-	250		250		250		
10	-	4.4			VS14	700		1000		1000		
10	7 M M 1 0	14			V S 14	250		250		250		
12	ZA-M12	16	No cleani	ng	VS16		VL10/0,75		VL10/0,75		VL10/0,75	
14	-	18	required	l k	VS18	700	or ´		or		or or	
16	ZA-M16	20			VS20		VL16/1,8		VL16/1,8		VL16/1,8	
20	ZA-M20	25			VS25			1000		4000		
22	-	28			VS28			1000		1000		
24/25	ZA-M24	32			VS32	500						
28	-	35			VS35							
32/34	-	40			VS40							

Team Pro Injection system TP E SD+ for rebar connection	
Intended use Installation tools	Annex B 6

A) Bore hole drilling

Note: Before drilling, remove carbonated concrete and clean contact areas (see Annex B1) In case of aborted drill hole: the drill hole shall be filled with mortar.



1a. Hammer (HD) or compressed air drilling (CD)

Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar Proceed with Step B1.

Hammer drill (HD + HDB)



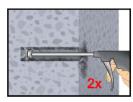
1b. Hollow drill bit system (HDB) (see Annex B 5)

Drill a hole into the base material to the size and embedment depth required by the selected reinforcing bar. This drilling system removes the dust and cleans the bore hole during drilling. Proceed with Step C.

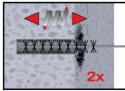
Compressed air drill (CD)

1c. Diamond drilling (DD)

Drill with diamond drill a hole into the base material to the size and embedment depth required by the selected anchor Proceed with Step B2.

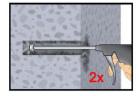


Diamond coring (DD)


B1) Bore hole cleaning

CAC: Cleaning for all bore hole diameter and bore hole depth with drilling method HD and CD

Attention! Standing water in the bore hole must be removed before cleaning.



2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 7) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used

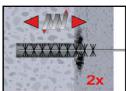
2b. Check brush diameter (Table B5). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B5) a minimum of two times.

If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B5).

2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 7) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

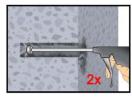
Team Pro Injection system TP E SD+ for rebar connection	
Intended use Installation instruction: Bore hole drilling and cleaning (HD, HDB and CD)	Annex B 7



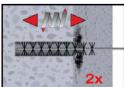
B2) Bore hole cleaning

SPCAC: Cleaning for all bore hole diameter and bore hole depth with drilling method DD

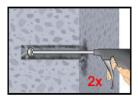
2a. Rinsing with water until clear water comes out.


2b. Check brush diameter (Table B5). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B5) a minimum of two times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.

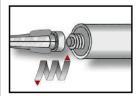


2c. Rinsing again with water until clear water comes out.


Attention! Standing water in the bore hole must be removed before proceed cleaning.

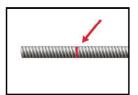
2d. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 7) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used

2e. Check brush diameter (Table B5). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B5) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B5).

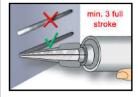

2f. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 7) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

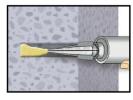
Team Pro Injection system TP E SD+ for rebar connection	
Intended use Installation instruction: Bore hole drilling and cleaning (DD)	Annex B 8



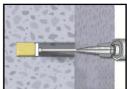
C) Preparation of bar and cartridge


3a. Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.

For every working interruption longer than the recommended working time (Table B3) as well as for every new cartridges, a new static-mixer shall be used.

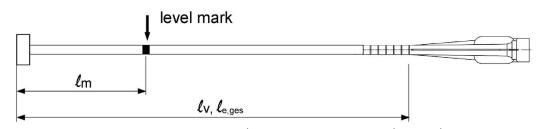

Prior to inserting the reinforcing bar into the filled bore hole, the position of the embedment depth shall be marked (e.g. with tape) on the reinforcing bar and insert bar in empty hole to verify hole and depth ℓ_v .

The anchor should be free of dirt, grease, oil or other foreign material.



3c. Prior to dipensing into the bore hole, squeeze out separately the mortar until it shows a consistent grey or red colour, but a minimum of three full strokes, and discard non-uniformly mixed adhesive components.

D) Filling the bore hole



4. Starting from the bottom or back of the cleaned bore hole fill the hole with adhesive, until the level mark at the mixer extension (see below) is visible at the top of the hole. For embedment larger than 190 mm an extension nozzle shall be used. Slowly withdraw the static mixing nozzle and using a piston plugs during injection of the mortar, helps to avoid creating air pockets.

For overhead and horizontal installation and bore holes deeper than 240 mm a piston plug and the appropriate mixer extension must be used.

Observe the gel-/ working times given in Table B3.

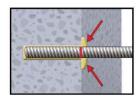
Injection tool must be marked by mortar level mark $\ell_{\rm m}$ and anchorage depth $\ell_{\rm v}$ resp. $\ell_{\rm e,ges}$ with tape or marker.

Quick estimation: $\ell_m = 1/3 \cdot \ell_v$

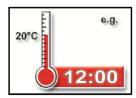
Continue injection until the mortar level mark $\ell_{\rm m}$ becomes visible.

Optimum mortar volume: $\ell_{m} = \ell_{v} \text{ resp. } \ell_{e,ges} \cdot \left(1,2 \cdot \frac{\varphi^{2}}{d_{0}^{2}} - 0,2\right) \text{ [mm]}$

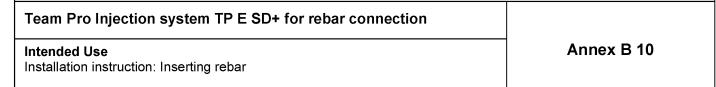
Team Pro Injection system TP E SD+ for rebar connection	
Intended Use Installation instruction: Preparation of bar and cartridge Filling the bore hole	Annex B 9



E) Setting the rebar



5a. Push the reinforcing bar into the bore hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.


The bar should be free of dirt, grease, oil or other foreign material.

Be sure that the bar is inserted in the bore hole until the embedment mark is at the concrete surface and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For horizontal and overhead installation fix embedded part (e.g. with wedges).

Observe gelling time t_{gel}. Attend that the gelling time can vary according to the base material temperature (see Table B3).
 Do not move or load the bar until full curing time t_{cure} has elapsed (attend Table B3).

Minimum anchorage length and minimum lap length

The minimum anchorage length $\ell_{b,min}$ and the minimum lap length $\ell_{0,min}$ according to EN 1992-1-1:2004+AC:2010 ($\ell_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $\ell_{0,min}$ acc. to Eq. 8.11) shall be multiply by the amplification factor α_{Ib} according to Table C1.

Table C1: Amplification factor α_{lb} related to concrete class and drilling method

Concrete class	Drilling method	Bar size	Amplification factor α _{lb}
C12/15 to C50/60	all drilling methods	8 mm to 40 mm ZA-M12 to ZA-M24	1,0

Table C2: Reduction factor kb for all drilling methods

Rebar	Concrete class								
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 40 mm					1.0				
ZA-M12 to ZA-M24					1,0				

Table C3: Design values of the ultimate bond stress fbd,PIR in N/mm² for all drilling methods and for good conditions

 $f_{bd,PIR} = k_b \cdot f_{bd}$

with

 f_{bd} : Design value of the ultimate bond stress in N/mm² considering the concrete classes, the rebar diameter, the drilling method for good bond condition (for all other bond conditions multiply the values by η_1 =0.7) and recommended partial factor γ_c = 1,5 according to EN 1992-1-1:2004+AC:2010. k_b : Reduction factor according to Table C2

Rebar		Concrete class							
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 32 mm ZA-M12 to ZA-M24	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3
34 mm	1,6	2,0	2,3	2,6	2,9	3,3	3,6	3,9	4,2
36 mm	1,5	1,9	2,2	2,6	2,9	3,3	3,6	3,8	4,1
40 mm	1,5	1,8	2,1	2,5	2,8	3,1	3,4	3,7	4,0

Team Pro Injection system TP E SD+ for rebar connection	
Performances	Annex C 1
Amplification factor α_{lb} , Reduction factor k_b	
Design values of ultimate bond resistance f _{bd,PIR}	

Design value of the ultimate bond stress $f_{bd,fi}$ at increased temperature for concrete classes C12/15 to C50/60, (all drilling methods):

The design value of the bond stress f_{bd,fi} at increased temperature has to be calculated by the following equation:

$$f_{bd,fi} = k_{fi}(\theta) \cdot f_{bd,PIR} \cdot \gamma_c / \gamma_{M,fi}$$

with: $\theta \le 278^{\circ}\text{C}$: $k_{fi}(\theta) = 4673.8 \cdot \theta^{-1.598} / (f_{bd,PIR} \cdot 4.3) \le 1.0$

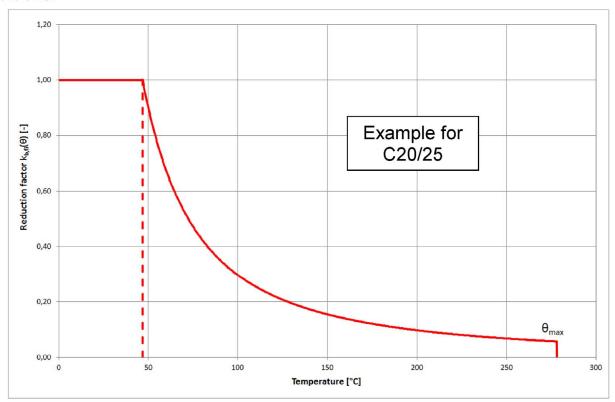
 $\theta > 278^{\circ}C$: $k_{fi}(\theta) = 0$

f_{bd,fi} Design value of the ultimate bond stress at increased temperature in N/mm²

θ Temperature in °C in the mortar layer.

 $k_f(\theta)$ Reduction factor at increased temperature.

f_{bd,PIR} Design value of the bond stress in N/mm² in cold condition according to Table C3


considering the concrete classes, the rebar diameter, the drilling method and the bond conditions

according to EN 1992-1-1:2004+AC:2010.

 γ_c = 1,5, recommended partially safety factor according to EN 1992-1-1:2004+AC:2010 = 1,0, recommended partially safety factor according to EN 1992-1-2:2004+AC:2008

For evidence at increased temperature the anchorage length shall be calculated according to EN 1992-1-1:2004+AC:2010 Equation 8.3 using the temperature-dependent design value of ultimate bond stress $f_{\text{bd,fi.}}$

Example graph of Reduction factor $k_{fi}(\theta)$ for concrete classes C20/25 for good bond conditions:

Team Pro Injection system TP E SD+ for rebar connection	
Performances Design value of ultimate bond stress f _{bd,fi} at increased temperature	Annex C 2

Table C6: Characteristic tension strength for tension anchor ZA under fire exposure, concrete classes C12/15 to C50/60, according to Technical Report TR 020

Tension Anchor				M12	M16	M20	M24
Steel, zinc plated	(ZA vz)						
	R30			20			
Characteristic steel strength	R60		[N/mm²]	15			
	R90	$\sigma_{Rk,s,fi}$		13			
	R120			10			
Stainless Steel (2	ZA A4 or Z	A HCR)					
Characteristic steel strength	R30				3	0	
	R60		[N]/27	25			
	R90	$\sigma_{Rk,s,fi}$	[N/mm²]		2	0	
	R120				1	6	

Design value of the steel strength $\sigma_{\text{Rd,s,fi}}$ under fire exposure

The design value of the steel strength $\sigma_{Rd,s,fi}$ under fire exposure has to be calculated by the following equation:

$$\sigma_{\text{Rd,s,fi}} = \sigma_{\text{Rk,s,fi}} / \gamma_{\text{M,fi}}$$

with:

σ_{Rk,s,fi} characteristic steel strength according to Table C4

γ_{M,fi} partially safety factor according to EN 1992-1-2:2004+AC:2008

Team Pro Injection system TP E SD+ for rebar connection	
Performances	Annex C 3
Design value of the steel strength $\sigma_{Rd,s,fi}$ for tension anchor ZA under fire	